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UNIT-III 

 

 

Dynamic programming: General method, Multistage graphs, All pairs shortest paths, 
0/1 Knapsack problem, Reliability design problem, Travelling sales person problem 

 

DYNAMIC PROGRAMING GENERAL METHOD: 
 

1. The idea of dynamic programming is thus quit simple: avoid 

calculating the    same thing twice, usually by keeping a table of known 

result that fills up a sub instances are solved. 

2. Divide and conquer is a top-down method. 

 

3. When a problem is solved by divide and conquer, we immediately 

attack the complete instance, which we then divide into smaller and 

smaller sub- instances as the algorithm progresses. 

4. Dynamic programming on the other hand is a bottom-up technique. 

5. We usually start with the smallest and hence the simplest sub-instances. 

 

6. By combining their solutions, we obtain the answers to sub-instances 

of increasing size, until finally we arrive at the solution of the original 

instances. 

7. The essential difference between the greedy method and dynamic 

programming is that the greedy method only one decision sequence is 

ever generated. 

8. In dynamic programming, many decision sequences may be 

generated. However, sequences containing sub-optimal sub-sequences 

can not be optimal and so will not be generated. 

 

2.5. MULTISTAGE GRAPH: 

A multistage graph G = (V,E) is a directed graph in which the 

vertices are portioned into K > = 2 disjoint sets Vi, 1 <= i<= k. 

In addition, if < u,v > is an edge in E, then u < = Vi and V Vi+1 for some i, 1<= i 

< k. 

If there will be only one vertex, then the sets Vi and Vk are such that [Vi]=[Vk] 

= 1. 

Let ‘s’ and ‘t’ be the source and destination respectively. 

 

The cost of a path from source (s) to destination (t) is the sum of the 

costs of the edger on the path. 

The MULTISTAGE GRAPH problem is to find a minimum cost path 
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from ‘s’ to ‘t’. 

Each set Vi defines a stage in the graph. Every path from ‘s’ to ‘t’ 

starts in stage-1, goes to stage-2 then to stage-3, then to stage-4, and 

so on, and terminates in stage-k. 

This MULISTAGE GRAPH problem can be solved in 2 ways. o 

 

Forward Method. 

o Backward Method. 

 

 
2.8.1. FORWARD METHOD 

Assume that there are ‘k’ stages in a graph. 

In this FORWARD approach, we will find out the cost of each and 

every node starling from the ‘k’ th stage to the 1st stage. 

We will find out the path (i.e.) minimum cost path from 

source to the destination (ie) [ Stage-1 to Stage-k ]. 

PROCEDURE: 

 
 
 
 

 
 
 
 
 
 

1. maintain a cost matrix cost (n) which stores the distance from any 

vertex to the destination. 

2. If a vertex is having more than one path, then we have to choose the 

minimum distance path and the intermediate vertex, which gives the 

minimum distance path, will be stored in the distance array ‘D’. 

3. In this way we will find out the minimum cost path from each 
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Cost (i,j) = min {C (j,l) + Cost (i+1,l) 

} l Vi + 1 

(j,l) E 

and every vertex. 

4. Finally cost(1) will give the shortest distance from source to destination. 

 

5. For finding the path, start from vertex-1 then the distance array D(1) 

will give the minimum cost neighbour vertex which in turn give the 

next nearest vertex and proceed in this way till we reach the 

Destination. 

 

6. For a ‘k’ stage graph, there will be ‘k’ vertex in the path. 

 

7. In the above graph V1…V5 represent the stages. This 5 stage graph 

can be solved by using forward approach as follows, 

 
STEPS: - DESTINATION, D 

Cost (12)=0 D (12)=0 

Cost (11)=5 D (11)=12 

Cost (10)=2 D (10)=12 

Cost ( 9)=4 D ( 9)=12 

1. For forward approach, 

cost(8) = min {C (8,10) + Cost (10), C (8,11) + Cost (11) } 

= min (5 + 2, 6 + 5) 

= min (7,11) 

= 7 

cost(8) =7 =>D(8)=10 

cost(7) = min(c (7,9)+ cost(9),c 

(7,10)+ cost(10)) (4+4,3+2) 

= min(8,5) 

= 5 

cost(7) = 5 =>D(7) = 10 

cost(6) = min (c (6,9) + cost(9),c (6,10) +cost(10)) 

= min(6+4 , 5 +2) 

= min(10,7) 
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= 7 

cost(6) = 7 =>D(6) = 10 

cost(5) = min (c (5,7) + cost(7),c (5,8) +cost(8)) 

= min(11+5 , 8 +7) 

= min(16,15) 

= 15 

cost(5) = 15 =>D(5) = 18 

cost(4) = min (c (4,8) + cost(8)) 

= min(11+7) 

= 18 

cost(4) = 18 =>D(4) = 8 

cost(3) = min (c (3,6) + cost(6),c (3,7) +cost(7)) 

= min(2+7 , 7 +5) 

= min(9,12)= 9 
cost(3) = 9 =>D(3) = 6  

cost(2) = min (c (2,6) + cost(6),c (2,7) +cost(7) ,c (2,8) +cost(8)) 

 = min(4+7 , 2+5 , 1+7 )  

 = min(11,7,8)  

 = 7  

cost(2) = 7 =>D(2) = 7  

cost(1) = min (c (1,2)+cost(2) ,c (1,3)+cost(3) ,c (1,4)+cost(4) 
,c(1,5)+cost(5)) 

= min(9+7 , 7 +9 , 3+18 , 2+15) 

= min(16,16,21,17) 

= 16 

cost(1) = 16 =>D(1) = 2 

The path through which you have to find the shortest 

distance. 

 

 

(i.e.) 

Start 

from 
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vertex - 2 

D(1) = 2 

D(2) = 7 

D(7) =10 

 
D (10) = 12    

So, the minimum –cost path is, 

9 2 3 2 

 

The cost is 9+2+3+2+=16 

ALGORITHM: 

FORWARD METHOD 

Algorithm FGraph (G,k,n,p) 

// The I/p is a k-stage graph G=(V,E) with ‘n’ vertex. 

// Indexed in order of stages E is a set of edges. 

// and c[i,J] is the cost of<i,j>,p[1:k] is a minimum cost path. 

{ 

 

cost[n]=0.0; 

for j=n-1 to 1 step-1 do 

{ 

//compute cost[j], 

// let ‘r’ be the vertex such that <j,r> is an edge of ‘G’ & 

// c[j,r]+cost[r] is minimum. 

 

cost[j] = 

c[j+r] + 

cost[r]; d[j] 

=r; 

} 

 

// find a minimum cost path. 

 

P[1]=1; 



DAA  UNIT-III                                                                                               Prepared by Mrs B.RAJANI  & Mrs C.JYOSTHNA 6 

P[k]=n; 

For 

j=2 

to k-

1 do 

P[j]=

d[p[j-

1]]; 

} 

 

 

ANALYSIS: 

The time complexity of this forward method is O(

 

V + E

 

) 2.8.2.BACKWARD METHOD 

if there one ‘K’ stages in a graph using back ward approach. we 

will find out the cost of each & every vertex starting from 1st 

stage to the kth stage. 

We will find out the minimum cost path from destination to source 

(ie)[from stage k to stage 1] 

PROCEDURE: 

It is similar to forward approach, but differs only in two or three ways. 

 

Maintain a cost matrix to store the cost of every vertices and a 

distance matrix to store the minimum distance vertex. 

Find out the cost of each and every vertex starting from vertex 1 

up to vertex k. 

To find out the path star from vertex ‘k’, then the distance array D (k) 

will give the minimum cost neighbor vertex which in turn gives the next 

nearest neighbor vertex and proceed till we reach the destination. 

STEP: 

Cost(1) = 
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0 => 

D(1)=0 

Cost(2) = 

9 => 

D(2)=1 

Cost(3) = 

7 => 

D(3)=1 

Cost(4) = 

3 => 

D(4)=1 

Cost(5) = 

2 => 

D(5)=1 

Cost(6) =min(c (2,6) + cost(2),c (3,6) + cost(3)) 

=

min(13,9) 

cost(6) = 

9 

=>D(6)=

3 

Cost(7) =min(c (3,7) + cost(3),c (5,7) + cost(5) ,c (2,7) + cost(2)) 

=m

in(14,13,11) 

cost(7) = 11 

=>D(7)=2 

Cost(8) =min(c (2,8) + cost(2),c (4,8) + cost(4) ,c (5,8) +cost(5)) 

=m

in(10,14,10) 
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cost(8) = 10 

=>D(8)=2 

Cost(9) =min(c (6,9) + cost(6),c (7,9) + cost(7)) 

=

min(15,15) 

cost(9) = 

15 

=>D(9)=6 

Cost(10)=min(c(6,10)+cost(6),c(7,10)+cost(7)),c(8,10)+cost(8)) 

=min(14,14,15) 

cost(10)= 14 =>D(10)=6 

Cost(11) =min(c 

(8,11) + cost(8)) 

cost(11) = 16 

=>D(11)=8 

cost(12)=min(c(9,12)+cost(9),c(10,12)+cost(10),c(11,12)+cost(11)) 

=mi

n(19,16,21) 

cost(12) = 16 

=>D(12)=10 

PATH: 

Start 

from 

verte

x-12 

D(12) 

= 10 

D(10) = 6 

D(6) = 3 

D(3) = 1 
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17 32 65 102
 12 

So the minimum cost path is, 

 

 

 

The cost is 16. 

ALGORITHM : BACKWARD METHOD 

Algorithm BGraph (G,k,n,p) 

// The I/p is a k-stage graph G=(V,E) with ‘n’ vertex. 

// Indexed in order of stages E is a set of edges. 

// and c[i,J] is the cost of<i,j>,p[1:k] is a minimum cost path. 

{ 

 

bcost[

1]=0.

0; 

for 

j=2 

to n 

do 

{ 

//compute bcost[j], 

// let ‘r’ be the vertex such that <r,j> is an edge of ‘G’ & 

// bcost[r]+c[r,j] is minimum. 

bcost[j] = 

bcost[r] + 

c[r,j]; d[j] =r; 

} 

// find a minimum cost path. 

 

 

 

P[1]=1; 

P[k]=n; 
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For j= 

k-1 to 

2 do 

P[j]=d

[p[j+1

]]; 

} 

 

 

2.6. TRAVELLING SALESMAN PROBLEM 

Let G(V,E) be a directed graph with edge cost cij is defined such that cij 

>0 for all i and j and cij = ,if <i,j> E. 

Let  V=n and assume n>1. 

The traveling salesman problem is to find a tour of minimum 

cost. A tour of G is a directed cycle that include every vertex in 

V. 

The cost of the tour is the sum of cost of the edges on the tour. 

 

The tour is the shortest path that starts and ends at the same vertex (ie) 1. 

APPLICATION : 

 

Suppose we have to route a postal van to pick up mail from the mail 

boxes located at ‘n’ different sites. 

An n+1 vertex graph can be used to represent the situation. 

 

One vertex represent the post office from which the postal van 

starts and return. 

Edge <i,j> is assigned a cost equal to the distance from site ‘i’ to site ‘j’. 

 

the route taken by the postal van is a tour and we are finding a tour of 

minimum length. 

every tour consists of an edge <1,k> for some k V-{} and a path from 

vertex k to vertex 1. 

the path from vertex k to vertex 1 goes through each vertex in 

V-{1,k} exactly once. 

the function which is used to 



DAA  UNIT-III                                                                                               Prepared by Mrs B.RAJANI  & Mrs C.JYOSTHNA 11 

12               8 

find the path is g(1,V-{1}) = 

min{ cij + g(j,s-{j})} 

g(i,s) be the length of a shortest path starting at vertex i, 

going through all vertices in S,and terminating at vertex 1. 

the function g(1,v-{1}) is the length of an optimal tour. 

 

 

1. Find g(i, ) =ci1, 1<=i<n, hence we can use equation(2) to obtain 

g(i,s) for all s to size 1. 

2. That we have to start with s=1,(ie) there will be only one vertex in set ‘s’. 

 

3. Then s=2, and we have to proceed until |s| <n-1. 

4. for example consider the graph. 

 
 
 
 
 
 
 
 

 

20 8 

 
 
 

Cost matrix 

0    10   15  20 

5 0 9     10 

6 13   0    12 

8     8     9     0 

 g(i,s) set of nodes 

/vertex have to visited. 

 

starting position 

g(i,s) =min{cij +g(j,s-{j}) 

 

STEP 1: 

g(1,{2,3,4})=min{c12+g(2{3,4}),c13+g(3,{2,4}),c14+g(4,{2,3})} 

min{10+25,15+25,20+23} 

10 

15 

10 

15 

913 
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min{35,35,43} 

=35 

 

 

STEP 2: 

g(2,{3,4}) = min{c23+g(3{4}),c24+g(4,{3})} 

 

min{9+20,10+15} min{29,25}=25 

g(3,{2,4}) =min{c32+g(2{4}),c34+g(4,{2})} 

 

min{13

+18,12+13} 

min{31,25}

=25 

 

g(4,{2,3}) = min{c42+g(2{3}),c43+g(3,{2})} 

 

 

STEP3:min{8+15,9+8} min{23,27}=23 

1. g(3,{4}) = min{c34 +g{4, }} 12+8=20 

2. 2. g(4,{3}) = min{c43 +g{3, }} 9+6 

=15 

 

3. g(2,{4}) = min{c24 +g{4, }} 10+8 

 

=18 

 

 

4. g(4,{2}) = min{c42 +g{2, }} 8+5 

=13 

5. g(2,{3}) = min{c23 +g{3, }} 

9+6=15 

6. g(3,{2}) = min{c32 +g{2, }} 

 

13+5=18 

STEP 4: 

g{4, } =c41 = 8 g{3, } 

=c31 = 6 g{2, } =c21 
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= 5 

s = 0. 

 

i =1 to n. 

g(1, ) = c11 => 0 

 g(2, ) =c21 => 5  

g(3, ) = c31 => 6 

 g(4, ) = c41 => 8 

s = 1 

 

i=

2 to 4 

g(2,{3}) = 

c23 + g(3, 

) 

= 9+6 =15 

g(2,{4}) = c24 + g(4, ) 

 

= 10+8 =18 

 

 

g(3,{2}) = c32 + g(2, ) 

 

= 13+5 =18 

 

 

g(3,{4}) = c34 + g(4, ) 

 

= 12+8 =20 

 

 

g(4,{2}) = c42 + g(2, ) 

 

= 8+5 =13 

 

 

g(4,{3}) = c43 + g(3, ) 

 

= 9+6 =15 
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s = 2 

 

 

i 1, 1 s and i s. 

 

 

g(2,{3,4}) = min{c23+g(3{4}),c24+g(4,{3})} 

 

min{9+20,10+15} 

min{29,25}=25 

g(3,{2,4}) =min{c32+g(2{4}),c34+g(4,{2})} 

 

min{13+18,12+13} min{31,25}=25 

g(4,{2,3}) = min{c42+g(2{3}),c43+g(3,{2})} 

 

min{8+15,9+18} min{23,27}=23 

 

 

 

s = 3 

 

 

g(1,{2,3,4})=min{c12+g(2{3,4}),c13+g(3,{2,4}),c14+g(4,{2,3})} 

min{10+25,15+25,20+23} 

min{35,35,43}=35 
Optimal cost  is 35 

 

the shortest path is, 

 

g(1,{2,3,4}) = c12 + g(2,{3,4}) => 1->2 

 

 

g(2,{3,4}) = c24 + g(4,{3}) => 1->2->4 

 

 

g(4,{3}) = c43 + g(3{ }) => 1->2->4->3->1 

 

 

so the optimal tour is 1 2 4 3 1 

 

 

All pairs shortest paths:  
In the all pairs shortest path problem, we are to find a shortest path between every  

pair of vertices in a directed graph G. That is, for every pair of vertices (i, j), we are  

to find a shortest path from i to j as well as one from j to i. These two paths are the  
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same when G is undirected.  

When no edge has a negative length, the all-pairs shortest path problem may be  

solved by using Dijkstra’s greedy single source algorithm n times, once with each of  

the n vertices as the source vertex.  

The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the  

length of a shortest path from i to j. The matrix A can be obtained by solving n  

single-source problems using the algorithm shortest Paths. Since each application of  

this procedure requires O (n2 ) time, the matrix A can be obtained in O (n3 ) time.  

The dynamic programming solution, called Floyd’s algorithm, runs in O (n3 ) time. Floyd’s  

algorithm works even when the graph has negative length edges (provided there are no  

negative length cycles).  

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some  

intermediate vertices (possibly none) and terminates at vertex j. If k is an  

intermediate vertex on this shortest path, then the subpaths from i to k and from k  

to j must be shortest paths from i to k and k to j, respectively. Otherwise, the i to j  

path is not of minimum length. So, the principle of optimality holds. Let A k (i, j)  

represent the length of a shortest path from i to j going through no vertex of index  

greater than k, we obtain:  

A k (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}  

1<k<n  
Algorithm All Paths (Cost, A, n)  
// cost [1:n, 1:n] is the cost adjacency matrix of a graph which  
// n vertices; A [I, j] is the cost of a shortest path from vertex  
// i to vertex j. cost [i, i] = 0.0, for 1 < i < n.  
{  
for i := 1 to n do  
for j:= 1 to n do  
A [i, j] := cost [i, j];  
// copy cost into A.  
for k := 1 to n do  
for i := 1 to n do  
for j := 1 to n do  
A [i, j] := min (A [i, j], A [i, k] + A [k, j]);  
}  
 
 

Complexity Analysis: A Dynamic programming algorithm based on this recurrence  

involves in calculating n+1 matrices, each of size n x n. Therefore, the algorithm has  

a complexity of O (n3 ).  

Example 1:  

Given a weighted digraph G = (V, E) with weight. Determine the length of the  

shortest path between all pairs of vertices in G. Here we assume that there are no  

cycles with zero or negative cost.  

 
 

cost adjacency matrix (A0 ) = 0 4 11 

6 0  2 

3    
 

 

 

 

General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}  
1<k<n  
Solve the problem for different values of k = 1, 2 and 3  
Step 1: Solving the equation for, k = 1;  
  

A1
 (1, 1) = min {(Ao

 (1, 1) + Ao
 (1, 1)), c (1, 1)} = min {0 + 0, 0} = 0  
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A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} = 4  

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} = 11  

A1(2, 1) = min {(Ao (2, 1) +Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} = 6  

A1(2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} =0  

A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} =2  

A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} =3  

A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), } = 7  

A1 (3, 3) = min {(Ao (3, 1) +Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} = 0 

 

A (1)
 = 0  4 11 

6  0  2 

3  7  0 

 

 
 
Step 2: Solving the equation for, K = 2;  

A 2(1, 1) = min {(A1
 (1, 2) + A1

 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0  

A 2(1, 2) = min {(A1
 (1, 2) +A1(2, 2), c (1, 2)} = min {(4 + 0), 4} = 4  

A 2(1, 3) = min {(A1
 (1, 2) + A1

 (2, 3), c (1, 3)} = min {(4 + 2), 11} = 6  

A 2(2, 1) = min {(A1 (2, 2) +A1(2, 1), c (2, 1)} = min {(0 + 6), 6} = 6  

A 2 (2, 2) = min {(A1 (2, 2) +A1 (2, 2), c (2, 2)} = min {(0 + 0), 0} = 0  

A 2 (2, 3) = min {(A1(2, 2) +A1(2, 3), c (2, 3)} = min {(0 + 2), 2} = 2  

A 2 (3, 1) = min {(A1 (3, 2) +A1(2, 1), c (3, 1)} = min {(7 + 6), 3} = 3  

A 2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} = 7  

A 2 (3, 3) = min {A1(3, 2) +A1 (2, 3), c (3, 3)} = min {(7 + 2), 0} = 0  
 

A (2)
 = 0 4 6 

6 0 2 

3 7 0 

  
Step 3: Solving the equation for, k = 3;  

A 3
 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 +3), 0} = 0  

A 3(1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 +7), 4} = 4  
A 3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 +0), 6} = 6  
A 3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 +3), 6} = 5  
A 3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 +7), 0} = 0  
A 3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 +0), 2} = 2  
A 3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 +3), 3} = 3  
A 3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 +7), 7} = 7  
A 3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} = 0  
 

A (3) =  0 4 6  

5 0 2 

3 7 0 

  

This is resultant cost path matrix 
  
 
 
 

0/1 – KNAPSACK:  
We are given n objects and a knapsack. Each object i has a positive weight wi and a  
positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack  
so that the value of objects in the knapsack is optimized.  
A solution to the knapsack problem can be obtained by making a sequence of  
decisions on the variables x1, x2, . . . . , xn. A decision on variable xi involves  
determining which of the values 0 or 1 is to be assigned to it. Let us assume that  
decisions on the xi are made in the order xn, xn-1, x1. Following a decision on xn,  
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we may be in one of two possible states: the capacity remaining in m – wn and a  
profit of pn has accrued. It is clear that the remaining decisions xn-1, , x1 must be  
optimal with respect to the problem state resulting from the decision on xn.  
Otherwise, xn, , x1 will not be optimal. Hence, the principal of optimality holds.  
Fn (m) = max {fn-1 (m), fn-1 (m - wn) + pn}  
--  
1  
For arbitrary fi (y), i > 0, this equation generalizes to:  
Fi (y) = max {fi-1 (y), fi-1 (y - wi) + pi}  
--  
2  
Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all  
y and fi (y) = - , y < 0. Then f1, f2, . . . fn can be successively computed using  
equation–2.  
When the wi’s are integer, we need to compute fi (y) for integer y, 0 < y < m. Since fi  
(y) = -  for y < 0, these function values need not be computed explicitly. Since  
each fi can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute  
fn. When the wi’s are real numbers, fi (y) is needed for real numbers y such that 0 <  
y < m. So, fi cannot be explicitly computed for all y in this range. Even when the wi’s  
are integer, the explicit Θ (m n) computation of fn may not be the most efficient  
computation. So, we explore an alternative method for both cases.  
The fi (y) is an ascending step function; i.e., there are a finite number  
of y’s, 0 = y1  
< y2 < . . . . < yk, such that fi (y1) < fi (y2) < . . . . . < fi (yk); fi (y) = -  , y < y1;  
fi  
(y) = f (yk), y > yk; and fi (y) = fi (yj), yj < y < yj+1. So, we need to compute only fi  
(yj), 1 < j < k. We use the ordered set Si = {(f (yj), yj) | 1 < j < k} to represent fi  
(y). Each number of Si is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0 =  
{(0, 0)}. We can compute Si+1 from Si by first computing:  
S i = {(P, W) | (P – p , W  
– w )  
 S i}  
Now, Si+1 can be computed by merging the pairs in Si and Si together. Note that if  
S i+1 contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj < Pk and Wj >  
Wk, then the pair (Pj, Wj) can be discarded because of equation-2. Discarding or  
purging rules such as this one are also known as dominance rules. Dominated tuples  
get purged. In the above, (Pk, Wk) dominates (Pj, Wj).  
Example 1:  
Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1,2,  

5) and M = 6.74  
1  
1  
1  
1  
Solution:  
Initially, fo (x) = 0, for all x and fi (x) = -  if x < 0.  
Fn (M) = max {fn-1 (M), fn-1 (M - wn) + pn}  
F3 (6) = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) + 5}  
F2 (6) = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) + 2}  
F1 (6) = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} = 1  
F1 (3) = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} = 1  
Therefore, F2 (6) = max (1, 1 + 2} = 3  
F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), -  + 2}  
F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} = 1  
F2 (2) = max {1, -  + 2} = 1  
Finally, f3 (6) = max {3, 1 + 5} = 6  
Other Solution:  
For the given data we have:  
S 0 = {(0, 0)}; S0 = {(1, 2)}  
S 1 = (S0 U S0 ) = {(0, 0), (1, 2)}  
X - 2 = 0 => x = 2.  
y – 3 = 0 => y = 3  
X - 2 = 1 => x = 3.  
y – 3 = 2 => y = 5  
S 11 = {(2, 3), (3, 5)}  
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S 2 = (S1 U S1 1) = {(0, 0), (1, 2), (2, 3), (3, 5)}  
X – 5 = 0 => x = 5.  
y – 4 = 0 => y = 4  
X – 5 = 1 => x = 6.  
y – 4 = 2 => y = 6  
X – 5 = 2 => x = 7.  
y – 4 = 3 => y = 7  
X – 5 = 3 => x = 8.  
y – 4 = 5 => y = 9  
S 21 = {(5, 4), (6, 6), (7, 7), (8, 9)}  
S 3 = (S2 U S2 ) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8, 9)}  
By applying Dominance rule,  
S 3 = (S2 U S2 ) = {(0, 0), (1, 2), (2, 3), (5, 4), (6, 6)}  
From (6, 6) we can infer that the maximum Profit  pi xi = 6 and weight  xi wi = 6 
 

Reliability Design:  
The problem is to design a system that is composed of several devices connected in  

series. Let ri be the reliability of device Di (that is ri is the probability that device i  

will function properly) then the reliability of the entire system is  ri. Even if the  

individual devices are very reliable (the ri’s are very close to one), the reliability of  

the system may not be very good. For example, if n = 10 and ri = 0.99, i < i < 10,  

then  ri = .904. Hence, it is desirable to duplicate devices. Multiply copies of the  

same device type are connected in parallel.  

If stage i contains mi copies of device Di. Then the probability that all mi  
have a malfunction is (1 - r)  

mi . Hence the reliability of stage i becomes 1 – (1 - r)mi  
The reliability of stage ‘i’ is given by a function i (mi).  
Our problem is to use device duplication. This maximization is to be carried out under  
a cost constraint. Let ci be the cost of each unit of device i and let c be the maximum  
allowable cost of the system being designed.  
We wish to solve:  
Maximize  

i (mi)  
1 i  n  

Subject to Cmi C  
1 i  n  
mi > 1 and interger, 1 < i < n  

  
Assume each Ci > 0, each mi must be in the range 1 < mi < ui, where  

ui =  C + Ci − CJ Ci  The upper bound ui follows from the observation that mj > 1  

An optimal solution m1, m2............... mn is the result of a sequence of decisions, one  
decision for each mi.  
Let fi (x) represent the maximum value of  
Subject to the constrains:  

 1  j I  (mJ)  

 CJ mJ  x  

1  j  i and 1 < cimj < uJ, 1 < j < i 
Example :  
Design a three stage system with device types D1, D2 and D3. The costs are $30, $15  
and $20 respectively. The Cost of the system is to be no more than $105. The  
reliability of each device is 0.9, 0.8 and 0.5 respectively.  
Solution:  

We assume that if if stage I has mi devices of type i in parallel, then  i (mi) =1 – (1-  
ri) mi  
Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui. Where:  
   
n  
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  
  
  
ui =  C + Ci − CJ  Ci   
Using the above equation compute u1, u2 and u3.  

105+ 30− (30+15 + 20)  
u1 = = 70/ 30 =2 

105+15− (30+15 + 20) =55 /15=3 

u3 = 105+ 20− (30+15 + 20)= 60 /20=3 

         

We useS i
j 

→ i:stage number and J: no. of devices in stage i = mi  

S o = fo (x), x initially fo(x) = 1 and x = 0, so, S o = 1,0  
Compute S1 , S2 and S3 as follows:  
S 1 = depends on u1 value, as u1 = 2, so  

S 1 = S 1
1 , S1 2  

S 2 = depends on u2 value, as u2 = 3, so  

 S 2 , S 2 , S 2  
1        2         3  

S 3 = depends on u3 value, as u3 = 3, so  

S 3 = S 3 , S 3 , S 3  
1      2         3  

 
Now find,S1 = (f (x), x )  

1 
 

f1 (x) = 1 (1) fo ( ), 1 (2) f 0 ()} With devices m1 = 1 and m2 = 2  

Compute 1 (1) and 1 (2) using the formula: i (mi)) = 1− (1 − ri ) mi  

1 (1) = 1− (1 − r1 ) m 1 = 1 – (1 – 0.9)1 = 0.9  

1 (2) = 1− (1− 0.9) 2 = 0.99  

S1 =  f1 (x), x  = = ( 0.9, 30)  

S1 
1 = 0.99 , 30 + 30  = ( 0.99, 60)  

Therefore, S1 = {(0.9, 30), (0.99, 60)}  

Next find  S 2
 = (f (x), x ) 

1  

f2 (x) = {2 (1) * f1 ( ), 2 (2) * f1 ( ), 2 (3) * f1 ( )}  

2 (1) = 1 − (1 − rI )  
= 1 – (1 – 0.8)1 = 1 – 0.2 = 0.8  

2 (2) = 1 − (1 − 0.8) 2 = 0.96  

2 (3) = 1 − (1 − 0.8) 3
 = 0.992  

S 2
 = {(0.8(0.9),30 + 15), (0.8(0.99),60 + 15)} = {(0.72, 45), (0.792, 75)}  

S 2
 = {(0.96(0.9),30 + 15 +15) , (0.96(0.99),60 + 15 + 15)}  

= {(0.864, 60), (0.9504, 90)}  

S 2
 = {(0.992(0.9),30 + 15 +15+15) , (0.992(0.99),60 + 15 + 15+15)}  

= {(0.8928, 75), (0.98208, 105)}  

S 2
= S 2 , S 2 , S 2  

1        2         3  
By applying Dominance rule to S2 :  
Therefore, S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)} 
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Dominance Rule:  
If Si contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1 ≤ x2,  
then (f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be discarded.  
Discarding or pruning rules such as the one above is known as dominance rule.  
Dominating tuples will be present in S i and Dominated tuples has to be discarded  
from S i .  
Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1, x1)  
Case 2: if f1 > f2 and x1 < x2 the discard (f2, x2)  
Case 3: otherwise simply write (f1, x1)  
S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}  

 3 (1) = 1 − (1 − rI ) mi = 1 – (1 – 0.5)1 = 1 – 0.5 = 0.5  

 3 (2) = 1 − (1 − 0.5) 2  

 3 (3) = 1 − (1 − 0.5) 3  

= 0.75  
= 0.875  

S3
1= (0.5 (0.72), 45 + 20), (0.5 (0.864), 60 + 20), (0.5 (0.8928), 75 + 20)  

 
  

S3
2= (0.36, 65), (0.437, 80), (0.4464, 95)  

S3
3={(0.75 (0.72), 45 + 20 + 20), (0.75 (0.864), 60 + 20 + 20),  

(0.75 (0.8928), 75 + 20 + 20)}  

S3= {(0.54, 85), (0.648, 100), (0.6696, 115)}  

  

S3
=  (0.875 (0.72), 45 + 20 + 20 + 20), (0.875 (0.864), 60 + 20 + 20 + 20),  

(0.875 (0.8928), 75 + 20 + 20 + 20)   
 

S3
= (0.63, 105), (1.756, 120), (0.7812, 135)  

If cost exceeds 105, remove that tuples  

S3= {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)}  
The best design has a reliability of 0.648 and a cost of 100. Tracing back forthe  
solution through Si ‘s we can determine that m3 = 2, m2 = 2 and m1 = 1 
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